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Background



Task Planning

Decompose a high-level task description (microwave salmon) into a plan
consisting of mid-level actions (open fridge, grab salmon, close fridge).
We assume there is a low-level controller that can execute these mid-level
actions (such as "grab cup").

Task: take the apple from the |
shelf and put it on the table

LLM-based
Task Planning l . subgoal
decomposition
Mid-level Skill Sequence —
l Imitation Learning,

— . .
Reinforcement Learning, ...

Low-level Controller




Existing Methods

1. Search-Based Methods:
a. search in a pre-defined domain (hard to scalell!
b. heuristics guided search!?]
c. learning-based task planning (representation learning, hierachical
learning)!3]
2. Generation-Based Methods: directly generate plans with LLMs
a. generate an entire plan before execution. [415]16]
b. %}fg%?lically generate actions at each timestep. (iterative planner)
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Existing Methods — Iterative Planner (2.b)

Instruction: You need to
act as a task planner, who
decomposea high-level... A
Global Information: You €——
are 1n a house that consists of

four rooms: bathroom...

[In-Context Examples]
Observation:  Currently,

you are standing in the «—

bathroom.... 0
Task: Take nap g
Plan: ? m o
A

4 g

S

Action

@ LLMs

Iterative Planner (Multiple Calls)

Pipeline:

(1) Promptan LLM to generate one action at a time;

(11) Execute the generated action and then append
the obtained observation to the LLM;

(i11) Generate the next action.

When errors occur during action execution:

(1)  re-generate actions at the current timestep;[!1[2!

(1) re-generate the entire plan from the initial
timestep.[3!

[1] Planning with large language models via corrective re-prompting.

[2] Yanjiang Guo, Yen-Jen Wang, Lihan Zha, Zheyuan Jiang, and Jianyu Chen. Doremi:
Grounding language model by detecting and recovering from plan-execution misalignment,
2023.

[3] Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with
dynamic memory and self-reflection.



Motivation — Existing Limitations of Iterative Planner

Token Inefficiency: Due to the multi-step nature of Instruction You need o

task planning (usually involving 5-20 steps), the act as a task planner, who
: ; ; decomposea high-level...
prompt tokens incur re.peated. charges, leading to high it A
costs of tokens (token inefficiency also relates to are in a house that consists of ﬁ h
: : : four rooms: bathroom...

runtime 1ne.fﬁc1ency). . o . [In-Context Examples]

Correction Inefficiency: Replan with iterative Observation:  Currently,
planner can be viewed as a trial-and-error approach e Shudmg 0 the ¢ 5
implemented at the execution-failed time step, which Task: Take nap 2
makes it difficult for the model to detect errors that Haps? I\ 3
occurred several time steps earlier. l g

‘5

@ LLMs Action @

Iterative Planner (Multiple Calls)



Methodology



Overview

I. Plan Sampling (Single Call) II. Action Tree Construction

Instruction: You need to act as a task planner, who decomposea high-level...
Global Information You arein a house that consists of four rooms: bathroom... Take nap

Initial Observatior: Currently, you are standing in the bathroom...
[In-Context Examples]

Task: Take nap Plan: ? I
* [Walk] <bedroom> [Walk] <couch>
© LLms
4 ¥
PR Y. A ——————— S v

{ Plan 1 Plan 3 > [Walk] <bed> [Walk] <couch> [Lie] <couch>

1
[Walk] <bedroom> I

| I
l ! .
: 1 I
i [Walk] <bed> 1 [Walk] <couch> 1 [Lie] <couch> 1 [Lie] <bed> [Sit] <couch> [Close] <curtain>
i ¥ I L 4 | ¥ 1 l l
i [Lie] <bed> 1 [Sit] <couch> 1 [Close] <curtain> |
: v 1 | 4 I
“‘ [Sleep] ] [Sleep] ] [Sleep] | [Sleep] [Sleep] [Sleep]
Vo e ow— - —— S - - — - - - —— -

III. 6rounded Deciding (Multiple Calls)

Instructiorr Ateach moment, I will provide you with observationsof your current environment, as well as the high-level task I want you to do, and previous mid-level sub-tasks that have
been executed You need to select the best sub-task from the options I provide to complete the designated home task based on the observation...
Observation (t;): Currently, you are standing in the bedroom, ... bed is close to character, ..
[History]
Task: Take nap
Decision Request (t1): Among the following actions, which action should you take.
A. [Walk] <bedroom>B. [Walk] <couch>C. ...

v

[Instruction] [Instruction] g

[Observation] (t,) — @ LLMs <— [Observation] (1) !
- History: You have executed the Error Info: %
( following sub-tasks: ¢ The previously choosed action
4 [Walk] <bedroom> QAN P “[Walk] <couch>" caused an error

Decision Request(t,): JA B X “<couch>" not in the environment

Among the following actions, Oliservation @ s R Decision Request (t,):

which action should you take. A corrective choice of sub-task is:

A. [Find] <bed> A. [Walk] <bedroom>

B. [Find] <couch> B.....



Plan Sampling

I. Plan Sampling (Single Call)

Instruction: You need to act as a task planner, who decomposea high-level...
Global Information You are in a house that consists of four rooms: bathroom. ..
Initial Observatiorr Currently, you are standing in the bathroom ...
[In-Context Examples]

e e

Task: Take nap Plan: ?
\/
® LLMms
o ————
Plan 1 | ( Plan 2 i { Plan 3 I
[Walk] <bedroom> | | [Walk] <bedroom> | | |Walk] <couch> 1
1 I v I
[Walk] <bed> |1 [Walk] <couch> 11 [Lie] <couch> I
v |l v I I
|Lie] <bed> 1 [Sit] <couch> 11 [Close] <curtain> |
\/ q 11 I
[Sleep] + 3 [Steep] Iy [Sleep] |

LLMs trained on large-scale data encode
commonsense knowledge about the real-
world.

The sampled plans serve as prior knowledge
for task planning



Action Tree Construction

______________________________________________________________________________________________________________________

1 [ \
! Take nap ‘; : Take nap :
: L :
: I 1 I
| Same Prefix Same Prefix | | i
I 1 1
E [Walk] [Walk] [Walk] [Walk] E [Walk] [Walk] i
1 <bedroom=> <bedroom= <couch> <couch> i <bedroom> <couch> |
o ! : | g ' ’
1 |
1
! [Walk] <bed> [Walk] <bed> [Lie] <couch> |Sit] <couch> e [Walk] <bed> |Lie] <couch> |Sit] <couch> i
I |
5 Y D 4 :
' |Lie] <bed> [Sit] <bed> [Close] <door> [Lie] <couch> | | [Lie] <bed> [Sit] <bed> [Close] <daor> |Lie] <couch> |
= | T / ' [
: i 1 1
: |Sleep| |Sleep| IS!eep] [Sleep] : : ISleep] [Sleep] ISIEepl [S]eepl :
___________________________________________________________ i l_._________________________________________________________’l
Sampled Plans Action Tree

When two plans share a common prefix but differ in their actions at a specific time step,
their shared prefix is aggregated into a single branch.

Benefits of Action Tree: Converting the filtering of the plan level into a search at the action
level, thereby reducing the execution time in the environment.



Grounded Deciding

III. 6rounded Deciding (Multiple Calls)

Instruction At each moment, I will provide you with observationsof your current environment,as well as the high-level task I want you to do, and previous mid-level sub-tasks that have

been executed You need to select the best sub-task from the options | provide to complete the designated home task based on the observation...

Observation (t;): Currently, you are standing in the bedroom, ... bed is close to character,..
[History]
Task: Take nap

Decision Request (t1): Among the following actions, which action should you take.
A. [Walk] <bedroom=>B. [Walk] <couch>C. ...

.

[Instruction]

[Observation] (t,) — @ LLms <— [Observation] (t,)
7 v History: You have executed the
" following sub-tasks: ‘

|Walk| <bedroom=>

Decision Request(t,): "ﬁ JAa P .x r—’
Among the following actions, @

. . Observation Error Information
which action should you take. £ fe

A. |Find] <bed>
B. |Find| <couch>

During grounded deciding, an LLM functions as the policy m(a; | g, h;, 0;).

[Instruction]

The previously choosed action
“|Walk| <couch>" caused an error
“<couch>" not in the environment
Decision Request (t,):

A corrective choice of sub-task is:
A. |Walk| <bedroom=

B

This process simulates the decision making process of humans, who first propose several action

options and then combine their current real-world observations to make decisions.



Grounded Deciding — Error Correction

(a) Error Correction (b) Successful Execution Legend
\ / ":'/ \ N Execution Position
x @ Executed Path
v ‘A R) ‘iy ‘Aa - ‘/1 ‘A = Trackback Path
x @ ™~ x '@f Root Node
A PO TR T RO T S S S R
X ‘
* * * ‘ ‘ ‘ ‘ * ‘ ‘ * ‘ =¥ Deprecated Path
x ) 4 Deprecared Node

Left: When an error occurs, the agent tracks back and marks the nodes along the way as
invalid. Afterward, it makes a new decision at the previous fork node.

Right: After the action is successfully executed, the agent makes a decision at the current
node moves on to the next level.



Experiment



Environment - VirtualHome

Task : Watch TV
Program:

[Walk] <television> (1)
[SwitchOn] <television> (1)
[Walk] <sofa> (1)

[Find] <controller> (1)

[Grab] <controller> (1)




Experimental Setup

Evaluate Metrics:

e Success Rate (SR) : SR is the fraction of executions that achieved all task-relevant goal-conditions.

e Goal Conditions Recall (GCR) : the set difference between ground truth final state conditions g and the
final state achieved g” with the generated plan, divided by the number of task-specific goal-conditions;

e Executability (Exec.) : the fraction of actions in the plan that are executable in the environment, even if

they are not relevant for the task.
e Cost: money spent to perform experiments.
e Number of Error Correction (No.EC)

LLM Backbone: Text-davinci-003
Baseline Models:

e Zero-Shot Plannerl!l: Tterative Planner without grounding (No observation at each timestep).
e ProgPrompt(?l: Open-loop Planner.

e [Iterative Planner: Iterative Planner with grounding. [1] Language Models as Zero-Shot Planners: Extracting

Actionable Knowledge for Embodied Agents. 2022 ICML

[2] Singh I, Blukis V, Mousavian A, et al. Progprompt:
Generating situated robot task plans using large language
models[C]//2023 TEEE International Conference on Robotics anc
Automation (ICRA). IEEE, 2023: 11523-11530.




Experimental Results

SOTA on success rate.

Token consumption is reduced by 92.2% compared to the previously

best-performing model.

40.5% decrease in error corrections.

S

EXEC. 1 I’ SR 1 ‘I GCR T $Cost | No.EC |

w/o correction : :

ZERO-SHOT PLANNER 16.49+3.08 11.07+0.76 ' 1.52+0.75 1.36+0.09 N/A
PROGPROMPT 35.04+3.98 : 12.54-_|-2.20: 19.99+2.83  1.2540.55 N/A
ITERATIVE-PLANNER  44.544+6.09 127.04+4.65' 33.25+5.32 5.12+0.14 N/A
TREE-PLANNERN-25  55.741+0.92 : 28.33+1.18 : 39.96+0.16 2.39+0.44 N/A
TREE-PLANNERN=50 49.01%5.67 :28.14j:2.45 : 35.84+4.20 3.48+0.04 N/A
with correction : : PR oo -
LoCAL REPLAN 79.66+2.33 137.46+1.711 51.9+0.15 12.884+0.17'1 3.294+0.46"
GLOBAL REPLAN 82.09+1.32 :37.93ﬂ:1.22: 52.46+0.86 :42.55:I:0.09 :: 3.434+0.15 :
TREE-PLANNERNy—25  89.13+0.17 135.30+1.78! 56.65+1.09 13.30+0.01 "1 1.854+0.05!
TREE-PLANNERy_50  88.26+2.47 '41.58+3.20, 59.55+3.20 4.5440.16 ,"\2.O4i0.26;I

- =

_—— e = = —— = — =

N represents the number of sampled plans.



Analysis — The upper limit of Plan Sampling

80 _ .

74%7

70

GCRmax
%0 GCRayg

%

50

4433 43%5

40

1 5 10 15 20 25 30 40 50 60 70 80
N

Maximum and average GCR for all sampled plans.
The x-axis represents the chosen N for plan sampling.

Conclusions:

1. GCR{p,x} being 81.2% indicates that plan
sampling is effective.

2. As N increases, there is a noticeable increase

in GCRp,,x}, but it eventually reaches a threshold.

3. GCRy,y4) does not consistently increase with
an increased N. This implies that as N becomes
larger, the proportion of “correct” plans to
sampled plans may not necessarily increase.



Analysis — The effectiveness of Grounded Deciding

EXEcC. SR GCR
w/o correction
TREE-PLANNERN=25  55.74 28.33 38.96
T with oracle 1 7.16 9.84 8.5
TREE-PLANNER N =50 49.01 28.14 3584
T with oracle 1 341 6.54 4.78
with correction
TREE-PLANNERy_»25  89.13 35.3  56.65
T with oracle T 845 P26:80 19.76
TREE-PLANNERN—5 8826  41.58  59.55
T with oracle 1 6.9 10.57 7.47

T represents the performance improvement after adding a

gold plan to action tree construction.

Conclusions:

1. After incorporating the gold plan, there was a
significant improvement in performance.

2. The improvement in performance for Tree-
Plannery._,; was greater than that for Tree-
Plannery_s.
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