
Tree-Planner: Efficient Close-loop Task
Planning with Large Language Models

Mengkang Hu1, Yao Mu1, Xinmiao Yu2, Mingyu Ding1*, Shiguang Wu3, Wenqi Shao4,
Qiguang Chen2, Bin Wang3, Yu Qiao4, Ping Luo1*

1 The University of Hong Kong, 2 Harbin Institute of Technology,
 3 Noah’s Ark Laboratory, 4 Shanghai AI Laboratory

ICLR 2024

Logistics
� Background

� Task Planning
� Existing Methods

� Motivation
� Methodology

� Plan Generation
� Action Tree Construction
� Grounded Deciding

� Experiments
� Environment
� Experimental Setup
� Experimental Results
� Analysis

� Background

� Task Planning
Decompose a high-level task description (microwave salmon) into a plan
consisting of mid-level actions (open fridge, grab salmon, close fridge).
We assume there is a low-level controller that can execute these mid-level
actions (such as "grab cup").

� Existing Methods

1. Search-Based Methods：
a. search in a pre-defined domain (hard to scale)[1]

b. heuristics guided search[2]

c. learning-based task planning (representation learning, hierachical
learning)[3]

2. Generation-Based Methods: directly generate plans with LLMs
a. generate an entire plan before execution. [4][5][6]

b. dynamically generate actions at each timestep. (iterative planner)
[7][8][9]

� Existing Methods - Reference
[1] Task Planning in Robotics: an Empirical Comparison of PDDL-based and ASP-based
Systems. 2018
[2] A heuristic search approach to planning with temporally extended preferences. 2007
[3] Hierarchical Planning for Long-Horizon Manipulation with Geometric and Symbolic Scene
Graphs
[4] Visually-Grounded Planning without Vision: Language Models Infer Detailed Plans from
High-level Instructions. 2020 ACL Findings
[5] Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied
Agents. 2022 ICML
[6] Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language
[7] Do As I Can, Not As I Say: Grounding Language in Robotic Affordances 2022.4
[8] Grounded Decoding: Guiding Text Generation with Grounded Models for Robot Control

� Existing Methods – Iterative Planner (2.b)

Pipeline:
(i) Prompt an LLM to generate one action at a time;
(ii) Execute the generated action and then append

the obtained observation to the LLM;
(iii) Generate the next action.

When errors occur during action execution:
(i) re-generate actions at the current timestep;[1][2]

(ii) re-generate the entire plan from the initial
timestep.[3]

[1] Planning with large language models via corrective re-prompting.
[2] Yanjiang Guo, Yen-Jen Wang, Lihan Zha, Zheyuan Jiang, and Jianyu Chen. Doremi:
Grounding language model by detecting and recovering from plan-execution misalignment,
2023.
[3] Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with
dynamic memory and self-reflection.

� Motivation – Existing Limitations of Iterative Planner

� Token Inefficiency: Due to the multi-step nature of
task planning (usually involving 5-20 steps), the
prompt tokens incur repeated charges, leading to high
costs of tokens (token inefficiency also relates to
runtime inefficiency).
� Correction Inefficiency: Replan with iterative
planner can be viewed as a trial-and-error approach
implemented at the execution-failed time step, which
makes it difficult for the model to detect errors that
occurred several time steps earlier.

� Methodology

� Overview

� Plan Sampling

LLMs trained on large-scale data encode
commonsense knowledge about the real-
world.

The sampled plans serve as prior knowledge
for task planning

� Action Tree Construction

When two plans share a common prefix but differ in their actions at a specific time step,
their shared prefix is aggregated into a single branch.

Benefits of Action Tree: Converting the filtering of the plan level into a search at the action
level, thereby reducing the execution time in the environment.

� Grounded Deciding

During grounded deciding, an LLM functions as the policy � �� �, ℎ�, ��).

This process simulates the decision making process of humans, who first propose several action
options and then combine their current real-world observations to make decisions.

� Grounded Deciding – Error Correction

Left: When an error occurs, the agent tracks back and marks the nodes along the way as
invalid. Afterward, it makes a new decision at the previous fork node.

Right: After the action is successfully executed, the agent makes a decision at the current
node moves on to the next level.

� Experiment

� Environment - VirtualHome

Task : Watch TV

Program:

[Walk] <television> (1)

[SwitchOn] <television> (1)

[Walk] <sofa> (1)

[Find] <controller> (1)

[Grab] <controller> (1)

� Experimental Setup

Evaluate Metrics:

● Success Rate (SR) : SR is the fraction of executions that achieved all task-relevant goal-conditions.
● Goal Conditions Recall (GCR) : the set difference between ground truth final state conditions � and the

final state achieved �′ with the generated plan, divided by the number of task-specific goal-conditions;
● Executability (Exec.) : the fraction of actions in the plan that are executable in the environment, even if

they are not relevant for the task.
● Cost: money spent to perform experiments.
● Number of Error Correction (No.EC)

LLM Backbone: Text-davinci-003

Baseline Models:

● Zero-Shot Planner[1]: Iterative Planner without grounding (No observation at each timestep).
● ProgPrompt[2]: Open-loop Planner.
● Iterative Planner: Iterative Planner with grounding. [1] Language Models as Zero-Shot Planners: Extracting

Actionable Knowledge for Embodied Agents. 2022 ICML
[2] Singh I, Blukis V, Mousavian A, et al. Progprompt:
Generating situated robot task plans using large language
models[C]//2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2023: 11523-11530.

� Experimental Results
� SOTA on success rate.
� Token consumption is reduced by 92.2% compared to the previously
best-performing model.
� 40.5% decrease in error corrections.

N represents the number of sampled plans.

� Analysis – The upper limit of Plan Sampling

Conclusions:
1. 퐺�� 푚�� being 81.2% indicates that plan
sampling is effective.
2. As N increases, there is a noticeable increase
in 퐺�� 푚�� , but it eventually reaches a threshold.
3. 퐺�� ��� does not consistently increase with
an increased N. This implies that as N becomes
larger, the proportion of “correct” plans to
sampled plans may not necessarily increase.

Maximum and average 퐺�� for all sampled plans.
The x-axis represents the chosen N for plan sampling.

� Analysis – The effectiveness of Grounded Deciding

Conclusions:
1. After incorporating the gold plan, there was a
significant improvement in performance.
2. The improvement in performance for Tree-
PlannerN=25 was greater than that for Tree-
PlannerN=50.

† represents the performance improvement after adding a
gold plan to action tree construction.

� Thanks

