

Tree-Planner: Efficient Close-loop Task Planning with Large Language Models

Mengkang Hu¹, Yao Mu¹, Xinmiao Yu², Mingyu Ding^{1*}, Shiguang Wu³, Wenqi Shao⁴, Qiguang Chen², Bin Wang³, Yu Qiao⁴, Ping Luo^{1*}

¹ The University of Hong Kong, ² Harbin Institute of Technology, ³ Noah's Ark Laboratory, ⁴ Shanghai AI Laboratory

ICLR 2024

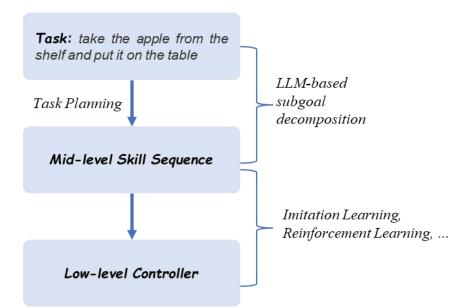
Logistics

```
Background
        Task Planning
        Existing Methods
Motivation
Methodology
        Plan Generation
        Action Tree Construction
        Grounded Deciding
Experiments
        Environment
        Experimental Setup
        Experimental Results
        Analysis
```

Background

Task Planning

Decompose a high-level task description (microwave salmon) into a plan consisting of mid-level actions (open fridge, grab salmon, close fridge). We assume there is a low-level controller that can execute these mid-level actions (such as "grab cup").



Existing Methods

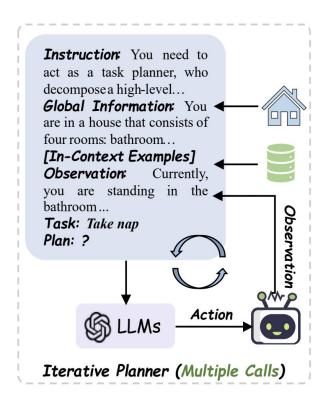
1. Search-Based Methods:

- a. search in a pre-defined domain (hard to scale)[1]
- b. heuristics guided search^[2]
- c. learning-based task planning (representation learning, hierachical learning)^[3]
- 2. Generation-Based Methods: directly generate plans with LLMs
 - a. generate an entire plan before execution. [4][5][6]
 - b. dynamically generate actions at each timestep. (iterative planner)

Existing Methods - Reference

- [1] Task Planning in Robotics: an Empirical Comparison of PDDL-based and ASP-based Systems. 2018
- [2] A heuristic search approach to planning with temporally extended preferences. 2007
- [3] Hierarchical Planning for Long-Horizon Manipulation with Geometric and Symbolic Scene Graphs
- [4] Visually-Grounded Planning without Vision: Language Models Infer Detailed Plans from High-level Instructions. 2020 ACL Findings
- [5] Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents. 2022 ICML
- [6] Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language
- [7] Do As I Can, Not As I Say: Grounding Language in Robotic Affordances 2022.4
- [8] Grounded Decoding: Guiding Text Generation with Grounded Models for Robot Control

Existing Methods – Iterative Planner (2.b)



Pipeline:

- (i) Prompt an LLM to generate one action at a time;
- (ii) Execute the generated action and then append the obtained observation to the LLM;
- (iii) Generate the next action.

When errors occur during action execution:

- (i) re-generate actions at the current timestep;^{[1][2]}
- (ii) re-generate the entire plan from the initial timestep.^[3]

^[1] Planning with large language models via corrective re-prompting.

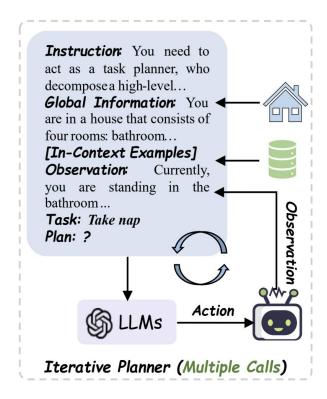
^[2] Yanjiang Guo, Yen-Jen Wang, Lihan Zha, Zheyuan Jiang, and Jianyu Chen. Doremi: Grounding language model by detecting and recovering from plan-execution misalignment, 2023

^[3] Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic memory and self-reflection.

Motivation – Existing Limitations of Iterative Planner

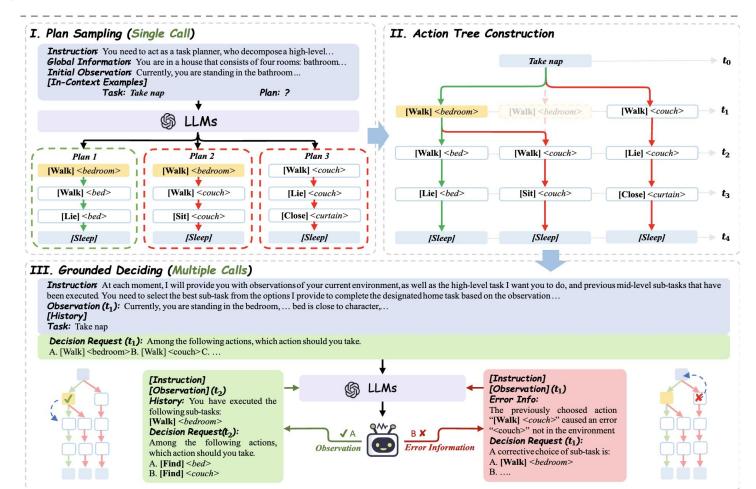
Token Inefficiency: Due to the multi-step nature of task planning (usually involving 5-20 steps), the prompt tokens incur repeated charges, leading to high costs of tokens (token inefficiency also relates to runtime inefficiency).

Correction Inefficiency: Replan with iterative planner can be viewed as a trial-and-error approach implemented at the execution-failed time step, which makes it difficult for the model to detect errors that occurred several time steps earlier.



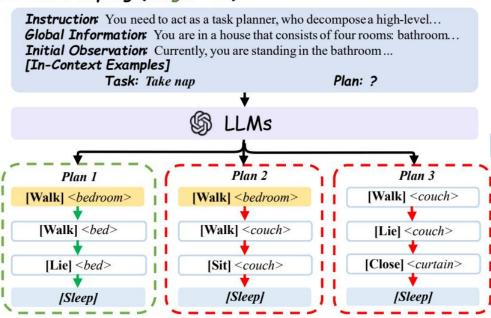
Methodology

Overview



Plan Sampling

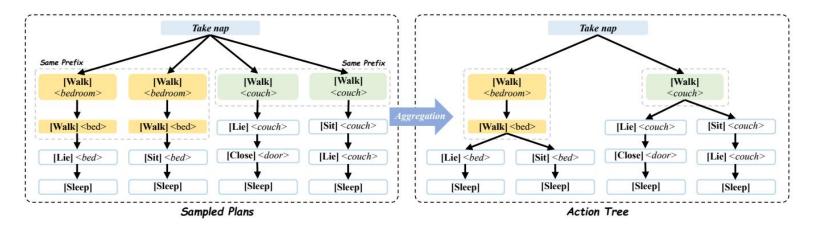
I. Plan Sampling (Single Call)



LLMs trained on large-scale data encode commonsense knowledge about the real-world.

The sampled plans serve as prior knowledge for task planning

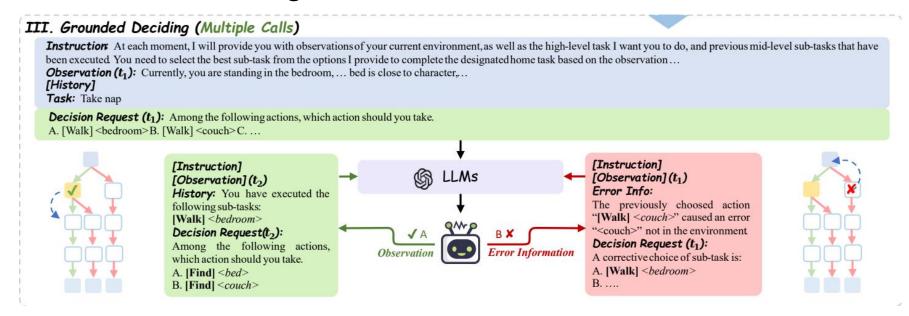
Action Tree Construction



When two plans share a common prefix but differ in their actions at a specific time step, their shared prefix is aggregated into a single branch.

Benefits of Action Tree: Converting the filtering of the plan level into a search at the action level, thereby reducing the execution time in the environment.

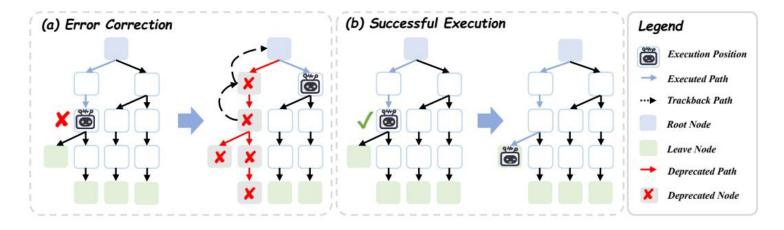
Grounded Deciding



During grounded deciding, an LLM functions as the policy $\pi(a_t \mid g, h_t, o_t)$.

This process simulates the decision making process of humans, who first propose several action options and then combine their current real-world observations to make decisions.

Grounded Deciding – Error Correction



Left: When an <u>error</u> occurs, the agent tracks back and marks the nodes along the way as invalid. Afterward, it makes a new decision at the <u>previous fork node</u>.

Right: After the action is successfully executed, the agent makes a decision at the current node moves on to the next level.

Experiment

Environment - VirtualHome

Task: Watch TV

Program:

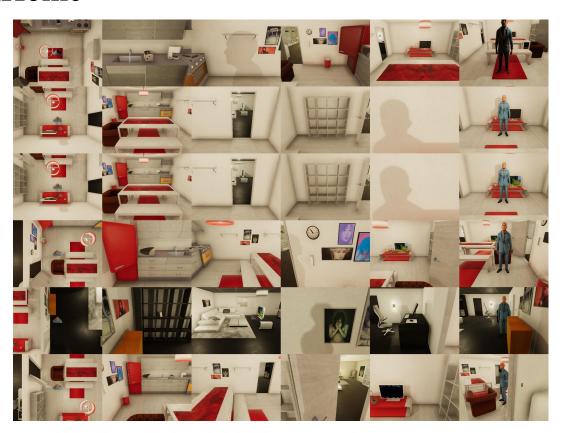
[Walk] <television>(1)

[SwitchOn] <television> (1)

[Walk] < sofa > (1)

[Find] <controller> (1)

[Grab] <controller> (1)



Experimental Setup

Evaluate Metrics:

- Success Rate (SR): SR is the fraction of executions that achieved all task-relevant goal-conditions.
- Goal Conditions Recall (GCR): the set difference between ground truth final state conditions *g* and the final state achieved *g'* with the generated plan, divided by the number of task-specific goal-conditions;
- Executability (Exec.) : the fraction of actions in the plan that are executable in the environment, even if they are not relevant for the task.
- Cost: money spent to perform experiments.
- Number of Error Correction (No.EC)

LLM Backbone: Text-davinci-003

Baseline Models:

- Zero-Shot Planner[1]: Iterative Planner without grounding (No observation at each timestep).
- ProgPrompt^[2]: Open-loop Planner.
- <u>Iterative Planner</u>: Iterative Planner with grounding.

[1] Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents. 2022 ICML [2] Singh I, Blukis V, Mousavian A, et al. Progprompt: Generating situated robot task plans using large language models[C]//2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023: 11523-11530.

Experimental Results

SOTA on success rate.

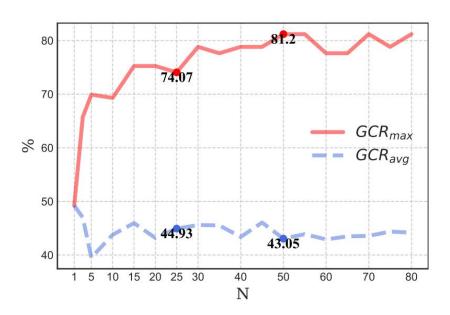
Token consumption is reduced by 92.2% compared to the previously best-performing model.

40.5% decrease in error corrections.

	Exec. ↑	/ SR↑ `	GCR↑	\$Cost↓	No.EC↓
w/o correction					
ZERO-SHOT PLANNER	16.49 ± 3.08	1.07 ± 0.76	1.52 ± 0.75	1.36 ± 0.09	N/A
PROGPROMPT	35.04 ± 3.98	12.54 ± 2.20	19.99 ± 2.83	1.25 ± 0.55	N/A
ITERATIVE-PLANNER	44.54 ± 6.09	27.04 ± 4.65	33.25 ± 5.32	5.12 ± 0.14	N/A
TREE-PLANNER $_{N=25}$	55.74 ±0.92	28.33 ±1.18	39.96 ±0.16	2.39 ± 0.44	N/A
Tree-Planner $_{N=50}$	49.01 ± 5.67	28.14 ± 2.45	35.84 ± 4.20	3.48 ± 0.04	N/A
with correction		1 !			
LOCAL REPLAN	79.66 ± 2.33	37.46 ± 1.71	51.9 ± 0.15	12.88 ± 0.17	3.29 ± 0.46
GLOBAL REPLAN	82.09 ± 1.32	37.93 ± 1.22	52.46 ± 0.86	42.55 ± 0.09	3.43 ± 0.15
TREE-PLANNER $_{N=25}$	89.13 ±0.17	35.30 ± 1.78	56.65 ± 1.09	3.30 ±0.01	1.85±0.05
TREE-PLANNER $_{N=50}$	88.26±2.47	41.58 ±3.20,	59.55 ±3.20	4.54±0.16	2.04 ± 0.26

N represents the number of sampled plans.

Analysis – The upper limit of Plan Sampling



Maximum and average *GCR* for all sampled plans. The x-axis represents the chosen N for plan sampling.

Conclusions:

- 1. $GCR_{\{max\}}$ being 81.2% indicates that plan sampling is effective.
- 2. As N increases, there is a noticeable increase in $GCR_{\{max\}}$, but it eventually reaches a threshold.
- 3. $GCR_{\{avg\}}$ does not consistently increase with an increased N. This implies that as N becomes larger, the proportion of "correct" plans to sampled plans may not necessarily increase.

Analysis – The effectiveness of Grounded Deciding

	EXEC.	SR	GCR
w/o correction			
TREE-PLANNER _{N=25}	55.74	28.33	38.96
† with oracle ↑	7.16	9.84	8.5
TREE-PLANNER _{N=50}	49.01	28.14	35.84
† with oracle †	3.41	6.54	4.78
with correction			
TREE-PLANNER $_{N=25}$	89.13	35.3	56.65
† with oracle ↑	8.45	26.8	19.76
TREE-PLANNER _{N=50}	88.26	41.58	59.55
† with oracle ↑	6.9	10.57	7.47

[†] represents the performance improvement after adding a gold plan to action tree construction.

Conclusions:

- 1. After incorporating the gold plan, there was a significant improvement in performance.
- 2. The improvement in performance for Tree-Planner $_{N=25}$ was greater than that for Tree-Planner $_{N=50}$.

Thanks