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� Background



� Task Planning
Decompose a high-level task description (microwave salmon) into a plan 
consisting of mid-level actions (open fridge, grab salmon, close fridge).
We assume there is a low-level controller that can execute these mid-level 
actions (such as "grab cup").



� Existing Methods

1. Search-Based Methods：
a. search in a pre-defined domain (hard to scale)[1]

b. heuristics guided search[2]

c. learning-based task planning (representation learning, hierachical 
learning)[3]

2. Generation-Based Methods: directly generate plans with LLMs
a. generate an entire plan before execution. [4][5][6]

b. dynamically generate actions at each timestep. (iterative planner) 
[7][8][9]



� Existing Methods - Reference
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[5] Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied 
Agents. 2022 ICML
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� Existing Methods – Iterative Planner (2.b)

Pipeline:
(i) Prompt an LLM to generate one action at a time; 
(ii) Execute the generated action and then append 

the obtained observation to the LLM; 
(iii) Generate the next action.

When errors occur during action execution:
(i) re-generate actions at the current timestep;[1][2]

(ii) re-generate the entire plan from the initial 
timestep.[3]

[1] Planning with large language models via corrective re-prompting.
[2] Yanjiang Guo, Yen-Jen Wang, Lihan Zha, Zheyuan Jiang, and Jianyu Chen. Doremi: 
Grounding language model by detecting and recovering from plan-execution misalignment, 
2023.
[3] Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with 
dynamic memory and self-reflection.



� Motivation – Existing Limitations of Iterative Planner 

� Token Inefficiency: Due to the multi-step nature of 
task planning (usually involving 5-20 steps), the 
prompt tokens incur repeated charges, leading to high 
costs of tokens (token inefficiency also relates to 
runtime inefficiency).
� Correction Inefficiency: Replan with iterative 
planner can be viewed as a trial-and-error approach 
implemented at the execution-failed time step, which 
makes it difficult for the model to detect errors that 
occurred several time steps earlier. 



� Methodology



� Overview



� Plan Sampling

LLMs trained on large-scale data encode 
commonsense knowledge about the real-
world.

The sampled plans serve as prior knowledge 
for task planning



� Action Tree Construction

When two plans share a common prefix but differ in their actions at a specific time step, 
their shared prefix is aggregated into a single branch.

Benefits of Action Tree: Converting the filtering of the plan level into a search at the action 
level, thereby reducing the execution time in the environment.



� Grounded Deciding

During grounded deciding, an LLM functions as the policy � ��   �,  ℎ�,  ��). 

This process simulates the decision making process of humans, who first propose several action 
options and then combine their current real-world observations to make decisions. 



� Grounded Deciding – Error Correction

Left: When an error occurs, the agent tracks back and marks the nodes along the way as 
invalid. Afterward, it makes a new decision at the previous fork node. 

Right: After the action is successfully executed, the agent makes a decision at the current 
node moves on to the next level.



� Experiment



� Environment - VirtualHome

Task : Watch TV

Program: 

[Walk] <television> (1)

[SwitchOn] <television> (1)

[Walk] <sofa> (1)

[Find] <controller> (1)

[Grab] <controller> (1)



� Experimental Setup

Evaluate Metrics:

● Success Rate (SR) : SR is the fraction of executions that achieved all task-relevant goal-conditions.
● Goal Conditions Recall (GCR) : the set difference between ground truth final state conditions � and the 

final state achieved �′ with the generated plan, divided by the number of task-specific goal-conditions;
● Executability (Exec.)  : the fraction of actions in the plan that are executable in the environment, even if 

they are not relevant for the task.
● Cost: money spent to perform experiments.
● Number of Error Correction (No.EC)

LLM Backbone: Text-davinci-003

Baseline Models: 

● Zero-Shot Planner[1]: Iterative Planner without grounding (No observation at each timestep).
● ProgPrompt[2]: Open-loop Planner.
● Iterative Planner: Iterative Planner with grounding. [1] Language Models as Zero-Shot Planners: Extracting 

Actionable Knowledge for Embodied Agents. 2022 ICML
[2] Singh I, Blukis V, Mousavian A, et al. Progprompt: 
Generating situated robot task plans using large language 
models[C]//2023 IEEE International Conference on Robotics and 
Automation (ICRA). IEEE, 2023: 11523-11530.



� Experimental Results
� SOTA on success rate.
� Token consumption is reduced by 92.2% compared to the previously 
best-performing model.
� 40.5% decrease in error corrections.

N represents the number of sampled plans. 



� Analysis – The upper limit of Plan Sampling

Conclusions:
1.  퐺�� 푚��  being 81.2% indicates that plan 
sampling is effective.
2. As N increases, there is a noticeable increase 
in 퐺�� 푚�� , but it eventually reaches a threshold. 
3.   퐺�� ���  does not consistently increase with 
an increased N. This implies that as N becomes 
larger, the proportion of “correct” plans to 
sampled plans may not necessarily increase.

Maximum and average 퐺�� for all sampled plans. 
The x-axis represents the chosen N for plan sampling. 



� Analysis – The effectiveness of Grounded Deciding

Conclusions:
1. After incorporating the gold plan, there was a 
significant improvement in performance.
2. The improvement in performance for Tree-
PlannerN=25 was greater than that for Tree-
PlannerN=50.

† represents the performance improvement after adding a 
gold plan to action tree construction.
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